Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces.

نویسندگان

  • Nicolò Bontempi
  • Luca Carletti
  • Costantino De Angelis
  • Ivano Alessandri
چکیده

SiO2/TiO2 core/shell beads (T-rex) were designed, fabricated and tested for Raman detection of environmental CO2 under real-working conditions, as those encountered, for example, in solar-to-fuel conversion reactions. The exploitation of light trapping and morphology dependent resonances was crucial for extending the limit of detection of CO2 adsorbed on TiO2 surfaces. T-rex beads allowed for achieving surface enhanced Raman scattering (SERS) without using plasmonic metals showing high-efficiency, fast response and reproducibility in CO2 detection in both air and solvents. The dependence of SERS activity on Mie-type resonances was investigated through a systematic comparison of experimental data and numerical simulations, demonstrating that T-rex beads can be tailored for the detection of gaseous environmental pollutants on the basis of simple, Mie-scattering based calculations. Three-dimensional T-rex colloidal crystals were also successfully tested in precise, in situ, real time detection of CO2 as a function of different temperature-sweep cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmon-free SERS self-monitoring of catalysis reaction on Au nanoclusters/TiO2 photonic microarray.

Here, using the (Au/TiO2)-catalyzed reduction of 4-nitrothiophenol as a probe reaction, a catalysis/SERS bifunctional composite fabricated by uniformly dispersing catalysis-active Au nanoclusters (∼2 nm) on a SERS-active TiO2 photonic microarray was successfully applied to the non-plasmonic SERS self-monitoring of a catalytic reaction for the first time, which is superiorly sensitive and interf...

متن کامل

Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings

Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, th...

متن کامل

The Preparation of Au@TiO2 Yolk–Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue

This paper reports the synthesis of a new type of Au@TiO2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO2 nanotubes could be facilely controlled via properl...

متن کامل

Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering.

The surface-enhanced Raman scattering (SERS) effect is considered important for fast detection of characteristic ‘‘fingerprint’’ signatures of analytes. In the SERS effect, a substantial Raman enhancement arises on localized spots (‘‘hot spots’’) in metallic nanostructures owing to strong local electromagnetic fields associated with the surface plasmon resonances of metal nanostructures. SERS o...

متن کامل

Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water† †Electronic supplementary information (ESI) available: Detailed Benesi–Hildebrand plot, IR spectra, Raman assignments, and experiment optimization. See DOI: 10.1039/c4sc02618g Click here for additional data file.

Semiconductor materials have been successfully used as surface-enhanced Raman scattering (SERS)-active substrates, providing SERS technology with a high flexibility for application in a diverse range of fields. Here, we employ a dye-sensitized semiconductor system combined with semiconductor-enhanced Raman spectroscopy to detect metal ions, using an approach based on the “turn-off” SERS strateg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2016